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In this paper, we investigate conjugate heat transfer by natural convection, conduction and radiation in
open cavities in which a uniform heat flux is applied to the inside surface of the solid wall facing the
opening. Conservation equations are solved by finite difference-control volume numerical method. The
relevant governing parameters are: the Rayleigh numbers from 10° to 10'2, the Prandtl number,
Pr=0.7, constant for air, the cavity aspect ratio, A=L/H from 0.4 to 1, the wall thickness I/H =0.02-
0.08, the conductivity ratio k, from 1 to 50 and the surface emissivity, ¢ from 0 to 1. We found that
the surface radiation affected the flow and temperature fields considerably. The influence of the surface
radiation is to decrease the heat fluxes by natural convection and conduction while the heat flux by radi-
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Radiation ation increases with increasing surface emissivity. On the other hand, the convective and radiative Nus-
Open cavity selt numbers are increasing functions of the surface emissivity for a given wall conductance. The

combined Nusselt number and the volume flow rate are both increasing functions of the surface emissiv-
ity, particularly at high Rayleigh numbers. The convective and radiative Nusselt numbers are a decreasing
function of the wall conductance and an increasing function of the aspect ratio. We found similar trends

for the volume flow rate through the cavity.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Open cavities are encountered in various engineering systems,
such as open cavity solar thermal receivers, uncovered flat plate
solar collectors having rows of vertical strips, electronic chips,
passive systems, etc. For example, in applications such as flat plate
solar collectors, two or three dimensional small open cavities are
used to reduce thermal losses. In these applications, the order of
magnitude of cavity dimensions is usually small; hence, the heat
transfer is usually by laminar natural convection. However, the
heat flux may create such a high temperature that the resulting
radiation heat exchange would be significant. Indeed, experimental
studies show that this is the case (e.g. [1,2]). The situation is cer-
tainly similar in open cavity solar receivers and electronic cooling
cases where the heat flux may be high. A literature review shows
that there are numerous studies on heat transfer by natural
convection in open cavities, numerical (e.g. [3-10]) as well as
experimental (e.g. [11-14]), and by conjugate heat transfer (e.g.
[15-20]).

Representative numerical studies may be categorized as: (i) side
facing horizontal and inclined open cavities with an aspect ratio of
one (e.g. [3-6]), (ii) horizontal and inclined shallow cavities with
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isothermal or constant heat flux at the side facing the opening
(e.g. [7,8]), (iii) similar to the cases (i) and (ii) above but open cav-
ities having solid walls (e.g. [9]). In the first two cases, heat transfer
by natural convection only is considered, i.e. conduction and radi-
ation are neglected; in the last case, heat transfer by natural con-
vection and conduction is considered but radiation is neglected.
Similarly, experimental studies have been performed using open
cavities with an aspect ratio of one (e.g.[11-13]), in shallow cavi-
ties [1,14] and in inclined cavities where radiation heat exchange
is not negligible [2].

Theoretical conjugate heat transfer by natural convection and
radiation has been studied in various other geometries. Indirectly
related to our study, those in enclosures (e.g. [15,16]) and in open
cavities with side and top openings (e.g. [17,18]) may be men-
tioned. Akiyama and Chong [15] studied conjugate heat transfer
by natural convection and radiation in a square cavity. Ramesh
and Venkateshan [16] studied the effect of surface radiation on
heat transfer by natural convection in a square cavity. Ramesh
and Merzkirch [17] studied experimentally conjugate heat transfer
by convection and radiation in side vented open cavities with top
opening. They found that for cavities with low emissive walls nat-
ural convection was the dominant mode; with high emissive walls,
both natural convection and radiation were competitive modes
contributing equally to the total heat transfer. Singh and Venkate-
shan studied numerically the same problem [18]. They found that
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Nomenclature

A enclosure aspect ratio, = L/H

Cp heat capacity, J/kg K

Fy configuration factor

g acceleration due to gravity, m/s?

H cavity height, m

k thermal conductivity, W/m K

ke conductivity ratio, ks/ks

L cavity width, m

l wall thickness, m

N; radiation number,= JT;‘O /q"

Nu Nusselt Number

Nu, Radiative Nusselt number, = h; H/k¢

p pressure, Pa

P dimensionless pressure, = (p — p..)H?/po’

Pr Prandtl number, = v/«

q’ heat flux, W/m?

q dimensionless heat flux, = %

Ra Rayleigh number, = g8q”H*/(vok)

t time, s

uv dimensionless fluid velocities, = uH/o, vH/

1% dimensionless volume flow rate through the opening
XY dimensionless Cartesian coordinates, = x/H, y/H,
X,y Cartesian coordinates

Greek symbols

o thermal diffusivity, m?/s

oy thermal diffusivity ratio,= oo

B volumetric coefficient of thermal expansion, 1/K

r general diffusion coefficient
dij Kronecker delta

€ surface emissivity

¢ dimensionless radiative heat flux,= q,/oT%
(C] temperature ratio,= T/T,

0 dimensionless temperature, = (T — T,.)/(Hq" [k)
v kinematic viscosity, m?/s

0 fluid density, kg/m3

g Stefan-Boltzmann constant
T dimensionless time, = ot/H?
W stream function

Subscripts

c convection

cn conduction

ext extremum

f fluid

in into cavity

max maximum

opt optimum

out out of the cavity

r radiation, ratio

s solid

t total or combined

00 ambient value

1 at the wall surface, X=1/H
2 at the exit plane, X=A

radiation changed the flow pattern and the thermal performance in
side vented cavities with top opening. Studies of conjugate heat
transfer involving surface radiation in open cavities were reported
in [19,20]. Dehghan and Behnia [19] studied numerically conjugate
heat transfer by three modes in an open-top upright cavity having
discrete heater and with the bottom side insulated. They have also
done some experimental observations regarding flow patterns.
They found that the surface radiation had a significant effect on
the flow but a negligible one on the heat transfer performance;
there was also good agreement with their experimental study.
Hinojosa et al. [20] studied numerically conjugate heat transfer
by natural convection and radiation in an inclined cavity with iso-
thermal wall facing the opening and insulated other two bound-
aries. They found that the convective Nusselt number increased
with the inclination angle while the radiative Nusselt number
stayed quasi-constant.

In the present study, we address the case of conjugate heat
transfer by natural convection, conduction and radiation in open
cavities with a heated solid wall facing the opening and the other
two boundaries, perpendicular to the end wall, insulated. We
determine the influence of the surface radiation on the other
modes of heat transfer and the importance of each as a function
of the governing parameters.

2. Problem and mathematical model

Schematic of the two dimensional open cavity with a uniform
heat flux on the inner surface of the wall and the boundary
conditions are shown in Fig. 1. Horizontal boundaries of the cavity
are adiabatic, the left face of the solid wall is isothermal and its
right side is in the open cavity, which is in contact with the
ambient air. The inner side of the wall is heated at constant heat
flux, q".
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Fig. 1. Schematic of open cavities, the coordinate system and boundary conditions.

2.1. Convection and conduction formulation

We assume that the fluid is Newtonian, and the third dimension
has a negligible effect on the flow and heat transfer. With these
assumptions, we use two dimensional conservation equations for
mass, momentum and energy with Boussinesq approximation. By
using H as the length scale, «/H as the velocity scale, Hq" [k as the
temperature scale, poa?/H? as the pressure scale and H?/o as the
time scale, we obtain following non-dimensional equations
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We note that we are using unsteady state equations to obtain stea-
dy state solutions. I" in Egs. (2) and (3) is a general diffusion coeffi-
cient, which is equal to 1 in the fluid region and 10'® in the solid
region; it is introduced to ensure that U = V = 0 everywhere includ-
ing at the solid-fluid interface. «;, in Eq. (4) is the ratio of the ther-
mal diffusivities a/or and it is equal to 1 in the fluid region and os/o¢
in the solid region. In numerical simulation at each time step, we
have to satisfy the energy conservation at the interface between
the solid and the fluid, i.e. in the X direction for example,
k00s/0X = 00¢/0X with k; = ks/ks. For the steady state solution with
00/dt =0 and «, = k;, we have Eq. (4) in its simplified form.

2.2. Radiation formulation

We assume that the walls are diffuse and grey, and the air is a
non-absorbing medium. For an area on a surface the non-dimen-
sional energy conservation equation is obtained by introducing
O =TT, and {; = q,/aT“ in the dimensional equation in [21]

n
G
3 (65— FO) = > Iy~ (1 - Fy) L (5)
&j

j=1 j=1

where F;; is the configuration factor and n is the number of surface
areas.
At the surface:

. (006 00,
N = (a*x* k) 6)
where N, = ‘Tqﬂ is the radiation number, ‘a(—’)g and ”a‘—’,g are the heat fluxes

from the wall surface to the fluid and from the same surface to the
solid wall, respectively.

The governing parameters are Ra = gBq"H*/(vak), Pr=v/a, k., ¢,
and A=L/H and I/H.

The average convective Nusselt number is calculated at the in-
ner wall surface X=1/H as

_ [Yagy
NUC =— .[0 X (7)
Jo (01 — 02)dY
The average radiative Nusselt number is calculated at X =1/H as
1
N (dY
Nu, = —Jo NebsdY (8)
Jo (01 — 03)dY
The volume flow rate, V is calculated as
V=— [ UpdX 9)

JX=A
where Uy, =Ux-4if Ux-a<0and Uy, =0if Ux-4 = 0
The stream function is calculated from its definition as
_ _
U_fw, V_ax (10)

Y is zero on the solid surfaces and the streamlines are drawn by

AY = (Wmax — Wmin)/n With n is the number of increments. Bound-
ary conditions are

On solid surfaces: U=0,V =0 (11)
X=0 to JH,Y=0 and 1: PL_g (12a)

on

a0

X=I/H to A, Y=0 and 1 —%+Nr;: (12b)
X=0, Y=0 to 1: 0=0 (13)
v U ov
X:A7 Y=0 to 1: a—XZO, a—Xzfaiy7
00
Oin - 07 <&>out - O (14)

The boundary condition at the opening, Eq. (14) is shown to be sat-
isfactory for the case of confined computation domain in the open
cavity with respect to that extended computation domain [9]. The
boundary condition for the temperature is such that for the fluid
entering the cavity it is 0;,=0 and for the outgoing fluid
(060/0X)out = 0. The heater on the inside surface of the wall has a heat
flux of g =1.

3. Numerical technique

The numerical method used to solve Egs. (1)-(6) with the
boundary conditions Egs. (11) - (14) is the SIMPLER (semi-implicit
method for pressure linked equations revised) algorithm [22]. The
computer code based on the mathematical formulation presented
above and the SIMPLER method were validated with the bench-
mark [23]. The results showed that the deviations in Nusselt num-
ber and the maximum stream function at Ra = 10°> were 1.84% and
0.97%, respectively. Similarly at Ra=10° they were 1.74% and
1.09%, respectively. It was seen that the concordance was excellent.
In addition, the average Nusselt numbers at the hot and cold walls
of the benchmark problem were compared, which showed a max-
imum difference of about 0.5% in all runs. The present code was
tested also to simulate the case of conjugate heat transfer by
conduction and convection in open cavities [9]. The results are
presented in Table 1, which shows an excellent agreement. Addi-
tionally, we simulated the case of conjugate heat transfer by
convection and radiation in a square cavity [15]. The results pre-
sented in Table 2 show good agreements.

Uniform grid in X and Y direction was used for all computations.
Grid convergence was studied for the case of square cavity having
I/H=0.05 and k, =20 with grid sizes from 31 x 21 to 71 x 61 at
Ra=10"". The results are presented in Table 3. We see that
41 x 31 and 51 x 41, the variation in Nusselt is 1.19%, it is 0.59%
in volume flow rate, and 0.73% in radiative heat flux. Thus,
41 x 31 grid size was a good choice from the computation time
and precision point of view for the square cavity. We conducted
similar tests with the shallow and tall cavities and used 41 x 31
for A=0.7 and 41 x 31 for A=0.4 grid sizes. The grid size in the
wall was 2, 5 and 8 in the X direction for the wall thickness of I/
H=0.02, 0.05 and 0.08, respectively, and the rest were in the cav-
ity. Using a computer with a dual processor of 1.83 GHz clock
speed, for A =1, with 41 x 31 grid size, at Ra = 10', the typical exe-
cution time was 234 s and at Ra=10"", it was 284 s.

A converged steady state solution was obtained by iterating in
time until variations in the primitive variables between subse-
quent time steps were:

dol@ -l <107 (15)
where ¢ stands for U, V, and 0.

Table 1
Validation study of natural convection and conduction in an open square cavity [9]

Ra Nu/V [9] Nu/V[This study] % Deviations

108 1.01/0.20 1.016/0.190 —0.00594/0.05000
108 2.75/6.13 2.870/6.144 —0.04364/—0.00223
10'° 11.32/35.52 12.012/33.216 —0.06111/-0.02139
10'2 40.01/122.00 38.100/125.434 0.04774/—0.02815
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Table 2
Validation study of natural convection and radiation in a square enclosure [15]
[ON AT, K d, m € This study [15] % Deviations
Nu, Nu, Nuy Nuc Nu, Nug
41.7 10 0.264 1.0 4.013 11.254 15.267 3.861 11.220 15.281 3.94/0.30/1.23
41.7 10 0.264 0.0 4175 0 4175 4150 0 4150 0.60/0/0
1.6 260 0.0891 1.0 3.301 4411 7.712 3.471 4.481 7.952 4.89/1.57/3.02
1.6 260 0.0891 0.0 4.175 0 4.175 4,146 0 4,146 0.70/0/0.70
Table 3 . at Ra=10!° and 10'’. The change is more striking at Ra = 10'2, as
Grid independence study at Ra=10"" with A=1, l/H = 0.05, k; =20 the cavity air becomes more stratified. Wy is —29.8091 at
Size Nuc % Nu, % 14 % qv/q % Ra=10' it is increased to —57.2141 at 10!'! and then to
12
31x21 8731 387 20217 451 29216 271 000200 28  —136.9932at10°~ _ _
41x31 8888 214 19815 243 28672 080 0.00203 1.60 The isotherms corresponding to the same cases of Fig. 2 are
51x41 899 095 19576 119 28502 020 000204 087 shown in Fig. 3. We see that the influence of the surface radiation
6151 9045 041 19397 027 28482 013 000205 049 44 the temperature field is visibly important. The temperature gra-
71x61 9.082 000 19345 000 28445 0.00 0.00206 0.00

Within the same time step, the residual of the pressure term
was less than 1073 [22]. In addition, the accuracy of the solution
was double-checked using the energy conservation on the domain
to ensure it was less than 104

4. Results and discussion

The variable geometrical parameters considered are, the aspect
ratio, A=0.4, 0.7 and 1, and the dimensionless wall thickness,
I/H=0.02, 0.05 and 0.08. The Rayleigh number was varied from
Ra=10° to 10'2. The Prandtl number, Pr=0.70 for air was kept
constant. The conductivity ratio was varied from k. =1 to 50, the
first one is for insulation materials and the second for common
industrial materials. We will present first the results for the aspect
ratio, A = 1 and then the effect of it on the results. We will be using
the Rayleigh number, Ra = gfq"H*/kov to present both Nu. and Nu;
defined in the nomenclature as well as the total Nusselt number,
Nu,. For the simulation of the system shown in Fig. 1, we specified
H=0.727 m, T, = 300 K. We had the following range for the radia-
tion number: 459 < N, < 0.459 at Ra from 10° to 102, respectively;
i.e. N; is a decreasing function of Ra.

4.1. Flow patterns and isotherms

We will examine the effect of radiation on the flow and temper-
ature fields for the case of A=1, I/[H=0.05, k., =20, =0, 0.5, 1 and
at Ra=10'°,10'" and 10'2. We present the streamlines in Fig. 2 and
the isotherms in Fig. 3. The flow patterns at three Rayleigh num-
bers in Fig. 2 for the case without radiation, i.e. ¢ =0, are shown
in the first column. We see that the air enters the cavity from the
lower part of the opening, rises along the heated wall and follow-
ing upper horizontal boundary it exits at the upper part of the
opening. As expected, the flow pattern changes as the Rayleigh
number is increased from 10'° to 10'! and then 10" Indeed, Wey
is increased from —27.2628 at Ra=10'" to —55.6181 at 10'" and
then to —107.7358 at 10'2 For ¢=0.5 in the second column of
Fig. 2, we see that the flow pattern has changed with respect to
that with ¢=0 in the first column of Fig. 2, particularly as the
Rayleigh number is increased from 10'° to 10'. The strength of
the air circulation through the cavity is increased: Wex is
—28.2983 at Ra = 10'°, it is increased to —56.4030 at 10! and then
to —127.9201 at 10!2. We see that Wy is increased with respect to
those with ¢=0. For ¢ =1, i.e. black body radiation shown in the
third column of Fig. 2, the change in the flow pattern is further
enhanced but its appearance is almost the same as for ¢ = 0.5 case

dient for ¢ =0 is mainly confined at the heated wall. Yet with the
surface radiation in Fig. 3b and c, the temperature gradients on
the heated wall as well as on the adiabatic horizontal boundaries
are important. The isotherms near the corners are bent towards
the corners, thus indicating higher temperature gradients. We
see also that the isotherms in the solid wall show higher tempera-
ture gradients with surface radiation, hence important heat trans-
fer by conduction.

The flow and temperature fields for A=0.7 and 0.4, I[/H = 0.05,
k.=20,e=0and 1 and at Ra = 10"! are shown in Fig. 4. We see that
the flow and temperature fields are modified by the surface radia-
tion in a manner similar to the case withA=1.For A= 0.7, ¢= 0 and
e=1, Wex is —53.6804 and —55.8196, respectively; forA=0.4,¢=0
and ¢=1 it is —51.2875 and -53.3797, respectively, i.e. the
strength of convection is increased with the surface radiation.
Again, the temperature gradients on the adiabatic horizontal
boundaries are strikingly different from the case with no-surface
radiation. Thus, we expect that the heat transfer will accordingly
be affected by the surface radiation exchange in tall open cavities.

The influence of surface radiation on the velocity, U and the
temperature, 6 at the exit plane, X =A is presented in Fig. 5a and
the local convection Nusselt number, Nuy. at the planes of
X=0.05A, 0.6 A and X=A is presented in Fig. 5b for the case of
A=1,1/H=0.05, k,= 20 with Ra=10'°. We see in Fig. 5a that the
profiles of variations of U and 6 follow the description of the flow
and temperature fields in Figs. 2 and 3. For ¢ = 1, the velocity profile
of the cold fluid entering the cavity becomes more uniform. The
temperature profile at the entrance is modified along the bottom
wall as well as along the upper wall. In addition, we see important
modifications near the corners, due to higher temperature gradi-
ents as observed with Fig. 3. Thus, the influence of surface radia-
tion is to change the temperatures on the enclosure walls,
including the adiabatic ones. For the same case, the influence of
surface radiation on the convective local Nusselt number in
Fig. 5b is to modify it along the bottom and upper adiabatic walls
as seen at all three planes, and make more uniform along the
heated vertical wall as seen at X = 0.05 A plane. Thus, the variation
of the local Nusselt number is modified for ¢ =1 in such a way to
have a high convective local Nusselt number at the bottom and
top, and reduced values in between than those for ¢ = 0. These rep-
resentative results confirm indeed our observations of the flow and
temperature fields discussed earlier with Figs. 2 and 3.

4.2. Heat transfer and volume flow rate
In conjugate heat transfer by conduction, convection and radia-

tion, the total heat flux, g; = q” is the sum of the heat fluxes, qcn, g,
qr, respectively. Hence
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Fig. 2. Streamlines for A=1, I/H=0.05, k, =20 and ¢=0, 0.5 and 1.0 and (a) Ra = 10'°, (b) Ra=10"" and (c) Ra= 102
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For the case with A=1, I/H=0.05 and ¢ =1 with k; as a parameter,
we present q;/q; (i takes ¢, cn and r) as a function of the Rayleigh
number in Fig. 6. We observe that as expected, the heat flux by con-
duction, q¢, is slightly decreasing with Ra and it is increasing with
k;, which is expected because the wall surface temperature 0,
slightly decreases with Ra. The heat flux by natural convection, q.
is an increasing function of Ra and a decreasing function of k., which
is expected. As a result and following Eq. (16), the heat flux by radi-
ation, g, is slightly decreasing function of the Rayleigh number, Ra
and a decreasing function of the conductivity ratio, k. In particular,
we note that the heat flux by natural convection decreases when
the conductance through the wall increases. For k. = 1, a quasi-insu-
lated wall, the conductance is small, the natural convection has the
same order of magnitude as the conduction. Obviously, the heat flux
by natural convection increases with the Rayleigh number, as a re-
sult of which the heat flux by radiation decreases accordingly. We
note also that the order of magnitudes of the heat flux by radiation
is the highest in this case. For example, at Ra = 10'2, the heat flux is
0.16 by conduction, 0.62 by radiation and 0.22 by natural convec-
tion. For k; = 20, the conductance is high and the order of magnitude
of heat fluxes by convection and radiation is low. For example, at

(16)

Ra=10'2, the heat flux is 0.75 by conduction, 0.18 by radiation
and 0.07 by natural convection. This trend is further magnified for
k. =50 (not shown here) and the percentages become as 0.89,
0.08 and 0.03, respectively. We see that the influence of the surface
radiation on natural convection is important at any wall conduc-
tance case.

To see the influence of surface radiation on heat fluxes by con-
duction and convection, the data of g;/q; versus ¢ are plotted in
Fig. 7 with Ra as parameter. We see that both heat fluxes by con-
duction and natural convection, g.,/g: and q./q;, are a decreasing
function of ¢, and the heat flux by radiation is an increasing func-
tion of it. Thus, as expected the influence of surface radiation on
the conductive and convective heat fluxes is to decrease them as
the surface emissivity is increased from 0 to 1.

The average Nusselt numbers by Eqgs. (7), and (8) and the vol-
ume flow rate V by Eq. (9) are calculated as a function of the Ray-
leigh number and presented in Fig. 8 for the same case of A = 1 with
I/H, e=1 and k, as parameters. Following the results of Fig. 6, the
Nusselt number by natural convection, Nu. is an increasing func-
tion of the Rayleigh number, Ra and decreasing function of the con-
ductivity ratio, k.. The radiative Nusselt number, Nu; is quasi-
constant at high Rayleigh numbers but dependent on k, at low
Ra numbers. The contribution by each mode of heat transfer is
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Rayleigh number dependent; at high Rayleigh numbers; for example
atRa = 10'2, Nucis from 24 to 34 for k; = 1 to 50, while Nu, is about 20
although it is slightly decreased with increasing k.. Thus, the contri-
bution of the radiation mode is about 45% to 38%. At lower Rayleigh
numbers, this contribution is further increased. We see that for the
black body case with ¢=1, the influence of surface radiation is
important and non-negligible. The combined Nusselt number,
Nu, = Nuc + Nu, is an increasing function of the Rayleigh number
and decreasing function of the conductivity ratio, as it should. The
volume flow rate as a function of Rayleigh number with k; as a
parameter for the same case is also presented in Fig. 8. Following
the results of Nu in the same figure, we observe that V is an increas-
ing function of Ra and a decreasing function k, except at low Rayleigh
numbers where there is no discernible difference.

4.3. Effect of surface emissivity

The effect of the surface emissivity, ¢ on the heat transfer is pre-
sented as Nu; (i stands for ¢, r and t) as a function of the Rayleigh
number in Fig. 9 for the case of A=1, [/H=0.05 and k; =20 with
e£=0, 0.5 and 1.0. As expect, for ¢ =0, the natural convection in-
creases with increasing Rayleigh number and the radiation Nusselt

number, Nu; is nil. For ¢ = 0.5, the convection Nusselt number has
the same trend as for ¢ = 0; however, it is slightly reduced, because
of the effect of the surface radiation. The radiation Nusselt number,
Nu, is quasi-constant with Ra. For ¢=1, the convection Nusselt
number, Nu, has the same trend but it is further reduced with re-
spect to that for ¢ = 0.5; the radiation Nusselt number, Nu, is quasi-
constant with Ra and increased considerably with respect to that
for ¢ = 0.5, both results are also as expected. The reason for the con-
stancy of Nu; for ¢ > 0 with Ra is due to the fact that following Eq.
(8), the radiation number N, is a decreasing function of Ra, the radi-
ative heat flux ¢ is an increasing function of Ra and the wall surface
temperature 0, is a decreasing function of Ra. As a result, the nom-
inator and the denominator of Eq. (8) vary almost at the same rate
and Nu, becomes quasi-constant. We note also that at Ra = 102 for
example, the combined Nusselt number, Nu, is increased by about
43% with ¢ = 0.5 and 66% for ¢ = 1 when compared to the case with
&¢=0. A cross plot of the data as Nu; versus ¢ for the same case
showed that Nu. is a decreasing function of the emissivity ¢ while
the radiation Nusselt number, Nu; is an increasing function of it.
The trend of combined Nusselt number, Nu, is controlled by the
surface radiation as a consequence of which it is an increasing
function of the emissivity, ¢.
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Fig. 4. Streamlines and isotherms, for I/H = 0.05, =0 and 1.0, Ra=10"" and k, = 20. (a) A= 0.7, (b) A=0.4.
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Fig. 5. For the case of A=1, [/H=0.05, k; =20, £¢=0 and 1.0, and at Ra=10'°. (a)
velocity and temperature profiles at the exit plane, (b) the convective local Nusselt
number at three vertical planes.
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Fig. 6. Heat flux by conduction, radiation and natural convection as a function of
the Rayleigh number for the case A=1, I/H =0.05, k,=1-20 and ¢ =1.0.

4.4. Effect of wall thickness

This is essentially the effect of wall conductance on the heat
transfer by convection and radiation. It is expected that the com-
bined heat transfer by convection and radiation will be reduced
as the conductance is increased, i.e. as the wall thickness for a gi-
ven conductivity ratio is decreased. The results of Nu; and V as a
function of I/H for the case of A=1 with k. =20 and for £=0 and
1.0 at Ra=10'" and 10'? are presented in Fig. 10. As we can see,
for increasing wall thickness, I/H, the conductance becomes smal-
ler as a result of which Nu, and V are increased for both ¢=0
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Fig. 7. Heat flux by conduction, radiation and natural convection as a function of
the surface emissivity for the case A=1, I/H=0.05, k, =20 and Ra=10'°, 10'" and
102,
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Fig. 8. Convection, radiation and combined Nusselt numbers, and the volume flow
rate as a function of the Rayleigh number with k; as a parameter presented for the
case of A=1,[/[H=0.05 and ¢=1.0.
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Fig. 9. Convection, radiation and combined Nusselt numbers as a function of the
Rayleigh number with ¢ as a parameter presented for the case of A=1, I[/H = 0.05
and k; = 20.
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Fig. 10. Convection, radiation and combined Nusselt numbers, and the volume flow
rate as a function of the wall thickness, I/H with ¢ and Ra as parameters presented
for the case of A=1 and k, = 20.

and 1.0. The effect is more accentuated at higher Rayleigh num-
bers. Nu, is nil for ¢ = 0 and slightly increasing function of I/H. This
is expected since the surface radiation is quasi-independent of the
wall thickness. The trend of Nu; is controlled by the convective
Nusselt number: generally, Nu, and V are an increasing function
of I/H.

4.5. Effect of aspect ratio

The effect of the aspect ratio, A on the heat transfer, Nu; and vol-
ume flow rate, V is presented in Fig. 11 for the case of I/H = 0.05
with k, =20 and for ¢=0 and 1.0 at Ra= 10" and 10"2. For ¢=0,
the radiation exchange is zero, the convection is slightly decreasing
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Fig. 11. Convection, radiation and combined Nusselt numbers, and the volume flow
rate as a function of the aspect ratio, A with ¢ and Ra as parameters presented for
the case of I/H =0.05 and k; = 20.
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function of the aspect ratio for both Rayleigh numbers. This is ex-
pected since the convection is stronger in tall cavities with larger
openings. For ¢ =1, the radiation heat exchange is an increasing
function of the aspect ratio, A, and the effect of the Rayleigh num-
ber is negligibly small. This is also expected since the surface radi-
ation from relatively larger area has a bigger contribution as A is
increased. For the same reason as for ¢ = 0, the heat transfer by con-
vection is slightly decreasing function of it. As a result, the com-
bined Nusselt number, Nu, and the volume flow rate, V have a
trend following Nu. and Nu,: for ¢ =0, it is quasi-constant with A
and for ¢ = 1, it is an increasing function of A. Both are more accen-
tuated at higher Rayleigh numbers.

5. Conclusions

We investigated conjugate heat transfer by conduction, natural
convection and radiation in open cavities. The heat source is applied
to the vertical wall with finite thickness facing the opening. The
aspect ratio was varied from 0.4 to 1 and the wall thickness from
0.02 to 0.08. The Rayleigh number varied from 10° to 102, the con-
ductivity ratio from 1 to 50; the Prandtl number was 0.7. Conserva-
tion equations of mass, momentum and energy were solved by
finite difference-control volume numerical method. In view of the
results presented, the main points can be summarized as follows.

The surface radiation modifies the flow and temperature fields.
The modification starts at low surface emissivity and increases
gradually with it. The distribution of the heat flux by conduction
and natural convection is affected by the surface radiation; the
heat flux is an increasing function of the surface emissivity as a re-
sult of which heat fluxes by natural convection and conduction are
decreased with the surface emissivity. On the other hand, the con-
vective and radiative Nusselt numbers are both increasing func-
tions of the surface emissivity for a given conductivity ratio and
wall thickness.

The conductivity ratio and the wall thickness affect heat trans-
fer by natural convection and by surface radiation. Heat transfer by
natural convection and by surface radiation is a decreasing func-
tion of the conductivity ratio and increasing function of the wall
thickness. As a result, the Nusselt numbers by natural convection
and radiation are a decreasing function of the conductivity ratio
and an increasing function of the wall thickness at a given surface
emissivity.

The natural convection Nusselt number is a decreasing function
of the aspect ratio. The radiation Nusselt number and the volume
flow rate are increasing function of it.
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